
Naval Research Laboratory
Washington, DC 20375-5000

NRL Report 9283

Explicit State Vector Representation
for Heteroassociative Memories

JEFFREY K. UHLMANN

Battle Management Technology Branch
Information Technology Division

November 21, 1990

Approved for public release; distribution unlimited.



Form Approved

REPORT DOCUMENTATION PAGE orMB No, 0704088

-- ___________ - - -' _ . L--.. -.n . f searching existinf data sources.

Public reporting burden for this collection of information Is estimated to average n hour per response, -n.
gathefing and maintaining the data needed. and completing and revie-ng the (O oeding this burden e eof portsI aspect of this

collection of information, Indding suggestions for redclng this b.rder. to Washington Headquarter PServwces, Directorate Tor Information Operations nd Rep 215 Jefferson
-.- f flXA.- --- l)- -.. -h Oflfi- of Manaoment anti Budget. Paperwork Reduction Profect(G7G4-01BB),W85hiflg¶Ofl. OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 21, 1990

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Explicit State Vector Representation PE - 62702E

for Heteroassociative Memories TA - 5625

WU - DN150-127
6. AUTHOR(S)

Jeffrey K. Uhlmann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research LaboratoryRL Report 9283

4555 Overlook Ave.
Washington, DC 20375-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) l0. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency

Naval Technology Program Office
1400 Wilson Blvd.
Arlington, VA 22209-2308

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A new vector representation is examined as an alternative to the bipolar form often used in associative

memory models. This representation is shown to eliminate constraining symmetries through the introduction of

a noncommutative correlation operator. It is also shown that this representation leads to a recursive formulation

for a nonlinear associative memory with provable convergence properties. Generalizations using higher order

correlations are described.

14. SUBJECT TERMS 15. NUMBER OF PAGES
9

Associative memories Affine transformations l _9

Neural networks Higher order neural networks

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 ata~~~~~~~~~iuwu r~~~Il na ~ ioV"V .-QW
Prescribed by ANSI Std Z39-08
299 10?

NSN 7S40-01-28G-5500r
i



CONTENTS

INTRODUCTION ...............
THE EXPLICIT STATE REPRESENTATION .

HIGHER ORDER ASSOCIATIVE MEMORIES

SUMMARY.

REFERENCES ................

iii

1

2

4

5

5

................................................

........................

........................

........................



EXPLICIT STATE VECTOR REPRESENTATION
FOR HETEROASSOCIATIVE MEMORIES

INTRODUCTION

A critical issue in the analysis and development of associative memory (AM) models is the
representation of information. Typically, information to be processed is presented in the form
of a fixed-length vector of binary (two-state) variables. Clearly, the binary (0, 1) representation
is sufficient; for a variety of reasons, however, the bipolar (-1,+1) scheme is more commonly
used. One reason in particular is that it avoids normalization considerations because every n-
length bipolar vector has the same yW magnitude. This report examines an alternative vector
representation that maintains the advantages of the bipolar form while leading to more powerful,
nonlinear AM formulations.

Given a set of bipolar vector pairs {(u1, vI)...(un,vn)}, a bidirectional associative memory M
can be constructed as a sum of outer products:

72

M = E uTv,. (1)

This matrix is referred to as being bidirectionally associative [1] because for a learned pair
(ut,vi) it has the property that (uiM} = vi and (vMT} = ui, where the (-. function converts
the elements of a vector to bipolar form (according to sign). In this single-pass model of an AM,
associations are maintained as a matrix of first-order correlations between elements of the input
vectors and elements of the output vectors. It is easy to establish that such a model can guarantee
perfect recall only if the condition us * uj = 0, i + j, is satisfied because uiM can be expressed as
([l1 Eq. (17)):

uiM = uiufvi + E u> ujfvj. (2)
jhi

This orthogonality constraint can be relaxed (at the possible expense of bidirectional recall) to
simple linear independence by a more powerful recursive formulation using the Widrow-Hoff delta
rule [2]:

M(i) = M(i - 1) + cu7T(vj - (uiM(i - 1))), (3)

1
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where a is a weighting factor which determines the influence of the residual error in changing the

state of the memory. The attractive features of this model are that it is provably convergent when

a is sufficiently small and that it yields the LMS (least mean squares) solution when the input

vectors are linearly dependent. Unfortunately, like all first-order bipolar correlation memories, this

model possesses the constraining symmetry that if (uM) =v, then for the complement of u, u,

(uM) = V. In other words, first-order bipolar AMs are incapable of storing distinct associations

for complementary vectors.

THE EXPLICIT STATE REPRESENTATION

Symmetry under complementation in bipolar AMs derives from the fact that elemental correla-

tions are computed as simple products that are invariant under commutation. This symmetry can

be viewed statistically as a tacit assumption that P(bja) = 1 - P(bli) for all elements a of a vector

and all elements b of its associated vector. To relax this assumption, then, a noncommutative

correlation operator is required that maps each of the four distinct elemental pair possibilities to

a unique result. Fortuitously, the vector outer product operator can be employed for this purpose

by simply representing (0, 1) states with the two-element orthonormal vectors ([0 1, [1 03). Vectors

whose states are represented in this fashion are referred to as being in explicit state (ES) form. For

example, the vector [0 1 0 1] is represented in ES form as [0 1 1 0 0 1 1 0]. Although ES form

is not as compact as bipolar, ES vectors can be processed exactly like bipolar vectors in the AM

model described in Eq. (3) (except that the (.) function uses relative magnitudes of state pairs

when coercing vectors to strict ES form) in order to eliminate the complementation symmetry.

Normalization issues are avoided since the ES form of every n-length binary vector has magnitude

-,/n

To contrast the bipolar and ES forms, consider the result of storing a mapping from training

examples in which a complementary pair of vectors is associated with the same vector. In the bipo-

lar model, this mapping of anticorrelated vectors to correlated ones results in complete destructive

interference. Specifically, the sum of the two correlation matrices yields a zero matrix. In the ES

model, however, no interference results. The one-to-many inverse mapping necessarily produces

destructive interference for any model, but the difference between the bipolar and ES formulations

is that in the bipolar model of Eq. (1), the noise equally affects the forward and inverse channels

(i.e., M and MT) while in the ES model, these channels are independent. The character of the

channel independence in the ES representation is easily demonstrated given vectors u and v and

observing that:

UTV UT V = 0,

UTv TV = 0, (4)

vTu VTU = 0,
VT UV Tu = 0,

where ® is the Hadamard product C = A ® B defined as cj = aijbii.

An examination of the complementation symmetry reveals that the bipolar model in Eq. (1)

is only capable of learning invertible mappings. (In fact, effects from anticorrelated bit pairs

introduced in the ES formulation make the bipolar form of Eq. (1) better suited for one-pass learning

of invertible mappings. However, with a more sophisticated retrieval method, the ES version can

surpass the bipolar performance even in this case.) The advantage of the ES representation to Eq.

2
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(3) can be demonstrated by taking any three of the possible four 2-bit binary vectors (even the
zero vector) and noting that the ES conversion transforms the linearly dependent set to one that
is linearly independent. For example, the linearly dependent set {[O 1], 11 0], [1 1]} is transformed
to the linearly independent set {[0 1 1 0], [1 0a0 1], [1 0 1 0]}. A deeper analysis yields the following
theorem:

Theorem: The explicit-state form of Eq. (3) converges to the following nondistributive, hence
nonlinear, affine transformation:

y = xT + b, (5)

where T is a matrix and b is a constant vector.

Proof: Writing U as 1 - u, and similarly for V, the ES forms of binary vectors u and v can
be partitioned as [uI(1 - u)] and [vI(1 - v)], respectively, simply by separating the even and odd
elements. The transformation then takes the form:

[u1 - u)]M = [vI(1 - v)]. (6)
Partitioning M as

M | A B (7)MC D
yields the following bipolar expression for v:

V(bipolar) = uA + (1 u)C - uB - (1 - u)D, (8)
which simplifies to

V(bipolar) = u(A- B-C + D) + 1(C- D). (9)

Letting T = (A - B - C + D) and b = 1(C - D) completes the proof.

One important consequence of this result is that it assures that any mapping of a linearly in-
dependent set of input vectors can be learned even in the presence of constant additive noise. This
is surprising because an additive noise vector always exists that transforms a linearly independent
set of vectors to one that is linearly dependent. (A trivial case is the addition of a vector z to
each vector in a linearly independent set S when -z E S.) In other words, the ES representation
somewhat relaxes the linear independence condition required for perfect learning in Eq. (3). This
can also be accomplished in the bipolar model by appending a constant '1' to each vector. The
advantage of the ES representation is that recall from an incomplete vector (i.e., containing [0 0]
states) results in a transformation that subtracts the contributions of the missing vector positions
from both T and b. In the bipolar model, however, the additive component of the affine trans-
formation is unaffected by zero entries in the input vector. Thus, the ES representation generally
should have superior recall performance from incomplete inputs than the bipolar representation.

In addition, the ES representation supports probabilistic measurements with confidence factors.
Specifically, a state [a /3] can represent knowledge that an event is true with probability ca and is

3
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false with probability f where a ± <7 1. For example, if a measurement process with confidence

q (i.e., is accurate to within some acceptable tolerance bounds with probability q) suggests that a

given event is true with probability p, this information could be encoded as [pq (1 -p)qj. Thus, the

results of a measurement having zero confidence would be treated by the recall process as though

no information about the event were available. This is not equivalent to encoding the state as

10.5 0.5).

HIGHER ORDER ASSOCIATIVE MEMORIES

The definition of an AM network given in Eq. (3) uses only first-order correlations in learning a

heteroassociative mapping. It is well known, however, that many important mappings (e.g., XOR)

require the use of higher order correlations. Fortunately, this can be achieved without altering the

AM model simply by transforming the vectors so that the higher order autocorrelation information

becomes explicit in the first-order. For example, a vector u can be transformed to a vector x so

that the second-order information in u is first-order explicit in x as follows:

X = [u1u2 I ... I UiUj I ] i < j. (10)

In this case the transformation is equivalent to collecting the upper triangular elements of the

autocorrelation matrix ufT u as a single vector x. The generalization to kth-order is straightforward:

XC = I UIU2.--Uk I ... I Ui1 Ui2 C-UiA: I.. ]i < i2 < ... < ik- (11)

In the bipolar representation it should be apparent that the k-term products can provide only

parity information, i.e., a given product will be negative if and only if an odd number of terms are

negative, otherwise it will be positive. Thus, for correlations of order > 2, it is doubtful that the

information added to the bipolar representation would be of significant practical value. The direct

application of this unfolding process to ES vectors is similarly inadequate; however, this can be

remedied by generalizing the ES representation.

The motivation for the ES representation was the elimination of symmetries; however, because

symmetry operations always imply information loss (in the form of irreversibility), the principle

behind the ES representation can be viewed as one of information maximization. Specifically, no

first-order information is lost in the vector correlation process under the ES model. Thus, the gen-

eralized ES model should perform likewise for higher order correlations. This can be accomplished

by representing kth-order states with a set of orthonormal 2k-length vectors such that any ordered

k-element subset of a vector maps to a unique correlation state (in direct analog to the first-order

extension of binnary to ES form). Because the mapping is reversible, no loss of information occurs.

Unfortunately, the transformation of a vector of length n to kth-order ES form results in a vector

of length (k 2, where the first factor is the binomial coefficient giving the number of k-element

subsets of an n-element set. Thus, the practical use of very-high-order correlations is severely lim-

ited. However, third- and fourth-order correlations for vectors having 25 to 50 elements are within

the realm of feasibility for several currently available massively parallel computers and vectors

having more than 500 to 1000 elements can be processed by using second-order correlations.

The computational complexity associated with the use of high-order correlation information

can be often substantially reduced by eliminating redundancy in the raw vectors. For example,

in many practical applications, training vectors are generated by measuring a large number of

4
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variables or parameters without regard to (or, possibly, without the ability to determine) theirstatistical independence or information content. Simply by transforming the raw data by usinga Karhunen-Loeve Transform (KLT), or some similar transform that can be used to maximizeinformation on limited channels [3,4], the effective lengths of the vectors may be dramaticallyreduced. Thus, the order of correlation that can be practically used may be increased.

SUMMARY

In summary, it has been- shown that the commutative correlation operator used in most linearassociative memory (AM) models enforces symmetries that preclude the learning of several classesof important mapping functions. It has also been shown, however, that these symmetries can beeliminated simply by using a different information representation scheme. The explicit state (ES)representation has been proposed as an alternative to the commonly used bipolar form and has beendemonstrated to permit standard AM architectures to learn nonlinear mappings. In particular,it has been shown that the ES representation permits first-order AM models to learn nonlineartransformations of the form y = xT + b. This characterization is important because its propertiesare directly amenable to analysis by using the known properties of affine transformations. Forexample, it has been noted that this transformation renders the ES formulation immune to theeffects of constant additive noise. It has also been shown that the ES representation can be easilygeneralized for the use of higher order correlation information.
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